

Our Members

TOYOTA

EV Charging Infrastructure

Leveling Up – EV Charging Basics

Level 1

Range

Application

3 to 6 Miles of range/hour

- Residential PHEV
- Airports
- Some workplace

Level 2

20 to 40

Miles of range/hour

- Residential
- Workplace
- Public
- Fleet (overnight)

Level 3

(Direct Current Fast Charge, DCFC)

250 to 500

Miles of range/hour

- Corridor (IIJA)
- Transit hub (TNC, Taxi)
- City Center Cluster
- Fleet

EV Charging Infrastructure Gap

Currently Available	Total Ports		Non-Proprietary	
Currently Available	Georgia	U.S.	Georgia	U.S.
Level 2	2,858	94,166	2,391	92,725
DC Fast Chargers	718	25,593	331	10,249

To reach 100% EV sales by 2035, **\$39B required for publicly-available charging by 2030**

(Analysis assumes all DCFCs are 350kW. If chargers are 150kW, cost increases to \$52B)

Infrastructure Investment & Jobs Act EV Charging Infrastructure

National EV Formula Program

- FY22 FY26; Federal share = 80%
- Funds allocated to states using formula (23 U.S. Code § 104 subsection (c))
- To be used for EV charging on alternative fuel corridors
 - If alt. fuel corridors fully built out, funding may be used for publicly available chargers
- States must submit plans to DOT on intended funding usage
- DOT and DOE must provide guidance to states to prioritize investments, i.e.:
 - "current and anticipated market demands for [EV] charging infrastructure, including with regard to power levels and charging speed, and minimizing the time to charge current and anticipated vehicles"

Charging and Refueling Infrastructure Grants

- FY22 FY26; Federal share up to 80%
- Charging and hydrogen, propane, and natural gas fueling
- 50% along FHWA-designated Alt. Fuel Corridors & 50% "Community Grants"
- Publicly accessible projects outside of Alt. Fuel Corridors given priority for rural, low income and underserved communities, and multi-unit dwellings

State EV Charging Funding through National Electric Vehicle Formula Program

EV Charging Investment in IIJA National Electric Vehicle Formula Program

- Values rounded to the nearest \$million.
- Does not take into account \$2.5B for competitive grants.
- Source White House Fact Sheets

NEVI EV Charging Minimum Standards NPRM

	NEVI NPRM	Auto Innovators Recommendations	
Minimum Power Level	150 kW	350 kW	
Station Type	DCFC	DCFC	
Connector Type	SAE CCS	SAE CCS	
Distance Between	50 miles	50 miles (as a starting point)	
Chargers			
Ports/Station	4	Multiple	
Communication	Outages, malfunctions, pricing, etc. in real time via Open Charge Point Interface (OPCI) 2.2	Must be able to communicate to drivers charging station status	
Charger-to-Network Communication	Open Charge Point Protocol (OCPP)	OCPP	
Accessibility	24/7	24/7	
Payment Methods	All major debit/credit cards, not restricted by membership or payment type. Plug and Charge payment capabilities is required	Credit cards via credit card reader at a minimum	
Pricing	\$/kWh	\$/kWh	
Uptime	97%	Required, but not specified	
Station Configuration	No requirement, but encourage states to take into account larger vehicles and vehicles with trailers	Consider different vehicle configurations and vehicles with trailers	
EV Charging Signage	Not included due to open proceeding on updating the Manual on Uniform Traffic Control Devices	Allow signage on highway service signs	

EV Charging Infrastructure Summary

- Significant gap in pending funding and charging needs to support electrification goals
 - Additional public and private investment is necessary
- \$39B to \$52B investment estimated needed nationally in publiclyavailable charging by 2030
 - Investment range depends on power level of DC Fast Chargers (350 kW versus 150 kW)
- \$7.5 billion in Infrastructure Investment & Jobs Act is a good down payment
 - Begins to address corridor charging, but charging at other locations is still needed

EV Battery End-of-Life

Opportunities for Used EV Batteries

Reuse: refurbishing battery modules or packs to as good or better quality and performance levels through the replacement of worn or deteriorated components and re-certifying them to OEM specifications.

Repurpose: refurbishing EV battery components or packs to fulfill a different use from what was originally intended.

Recycle: treating EV batteries to recover the maximum amount of raw materials for reuse in identical or alternative industries.

EV Batteries - Circular Economy Growth – North America

Time Frame	Near Term (~2020-2025)	Medium Term (~2026-2030)	Long Term (beyond 2030)
EV Battery Manufacturing in US	 First cell plants (beyond Gigafactory) open Scrap from cell plants will promote more recycling facilities 	 >10 EV battery cell plants Direct positive-value recycling facilities increasing 	 >20 EV battery cell plants Potential for direct recycling/cathode and anode recovery
EV Battery Supply Chain Development	 First domestic CAM & precursor plants Input material supply chain tied only to mining operations Recycled material validation 	 Refining/processing comes on-line First mines/extractions Supply chain hooking up with recyclers Recycled material use begins 	 Mature domestic supply chain, including recycling with appropriate standards like plastics industry Recycled material is a significant portion of battery material
EV Battery Re-use Technology/Market	"R&D" phase	"Start-up" phase	"Mature" phase
Large Format Li-Ion Recycling Volume	 Most batteries refurbished (few entire batteries are scrapped) Low quantities of batteries processed through pyro processes 	 Some batteries/vehicles reach EOL Positive-value recycling scaling up 	Closer to "steady state" of used EV battery flow
kWh of vehicle Li-ion batteries recycled / year	• LOW	LOW and growing	MEDIUM and growing
Battery Recycling	Positive-value recycling emerging	Positive-value recycling technology and logistics growth	Cathode manufacturing uses a high percentage of recycled material like copper industry

Li-Ion Battery Recycling Opportunity

Domestic battery recycling can:

- Provide national energy security
- Reduce our dependency on foreign nations for materials
- Create domestic jobs
- Lower EV battery costs
- Stabilize critical mineral supply chain
- Enhance lifecycle environmental footprint

Non-Vehicle Secondary Use Batteries

Retired EV batteries retain significant capacity

Batteries can support national energy security for use as a distributed energy resource, microgrid, utility buffering, renewable energy storage, etc.

BMW Battery Storage Farm, https://cleantechnica.com/2017/10/30/bmw-group-officially-commissions-battery-storage-farm-leipzig/

EV Battery End-of-Life Summary

- EV battery recycling offers strategic and economic opportunity for U.S.
- Secondary use batteries can provide positive impact to national energy security and trade policy
- EV battery policy should be flexible and not hinder EV battery innovation

 Resilient domestic policy will bolster U.S. jobs, energy security, and leadership in electrified future

Auto Innovators Resources

- Auto Innovators <u>Get Connected EV Quarterly Report</u>
 - State-by-state and National status of EV sales, charging stations, EV price, etc.
- Auto Innovators <u>Recommended Attributes for Charging Stations</u> (Dec. 2021)
 - 350kW DCFC on corridors and transit hubs, SAE J1772 and SAE CCS connectors, credit card payment, 24/7 access, networked, standardized \$/kWh pricing, etc.
- Auto Innovators <u>EV Charging Infrastructure Guiding Principles</u> (Sept. 2021)
 - No-compromise mobility, need for public-private partnerships, utility rates and programs, grid upgrades, benefit to all customers, and building code requirements
- Auto Innovators <u>EV Battery Recycling Policy Framework</u>
 - EV battery recycling policy framework to ensure as close to 100% of end-of-life EV batteries are properly recycled or reused

Transforming Personal Mobility

Dan Bowerson
Senior Director, Energy & Environment
dbowerson@autosinnovate.org